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Abstract

The mechanical properties of porous materials are strongly in¯uenced by the stress concentration around pores.

In view of this, stress ®elds around a spheroidal pore is studied under dynamic loading conditions. A hybrid method
that combines the ®nite element method with an analytical approach has been used. It is shown that the dynamic
stress concentration is in¯uenced by three parameters: frequency of excitation, geometry of the pore and Poisson's

ratio of the medium. It is also shown that the dynamic stress concentration can reach much higher values than that
predicted by static analysis. # 2000 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Stress concentrations in elastic bodies arise from the presence of geometric and material
discontinuities, such as cavities, cracks, notches, inclusions and reinforcements. Determination of stress
concentration is a problem of considerable interest in many branches of applied mechanics, since failure
of a structural member often initiates as a result of high concentration of stress.

The study of stress concentration goes back to Kirsch (1898) who considered a circular hole in an
in®nite plate subjected to static tensile loading. Many investigations have since been conducted with
various kinds of discontinuities. A comprehensive survey of the literature may be found, for instance,
in the review articles of Sternberg (1958) and Neuber and Hahn (1966). Most of these investigations
considered static loading, where the inertia of the medium can be ignored. Under dynamic loading,
however, the inertia of the medium plays a signi®cant role. The action of the applied dynamic load is
transmitted in the form of waves traveling through the medium. At a discontinuity, these waves are
re¯ected, refracted and scattered giving rise to a complex stress pattern and, often to high elevation of
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local stresses. The phenomenon of dynamic stress concentration may, therefore, be regarded as one of
scattering of elastic waves.

Scattering of elastic waves by a discontinuity has been the subject of many investigations. The
excellent monograph by Pao and Mow (1973) gives a comprehensive coverage of this and other
related subjects. Recent results have been presented by Bogan and Hinders (1993) for a two-
dimensional geometry. In three dimensions, the spherical discontinuity problems are perhaps the
easiest to solve. Scattering by a spheriodal discontinuity presents considerably greater analytical and
computational di�culties than does the three-dimensional spherical geometry problems. Datta (1997)
and Willis (1980) presented approximate asymptotic solutions valid at low frequencies. In recent
years, Paskaramoorthy et al. (1988), Olsson et al. (1990), and Meguid and Wang (1997) have
presented results obtained by using numerical techniques. In all these studies, the emphasis was on the
scattered wave pattern, and none analyzed, in detail, the stress concentration near the spheroidal
discontinuity.

In the material science literature relating to this topic, the in¯uence of stress concentration around
pores on the mechanical properties of porous materials has long been recognized (Hasselman and
Fulrath, 1964; Rossi, 1968; Wang, 1984; Panakkal et al., 1990; Maitra and Phani, 1994; Boccaccini et
al., 1995). For instance, an equation of the form

E � E0�1ÿ p�m

has been shown to predict the Young's modulus (E ) of sintered powder metals and porous ceramics
(Panakkal et al., 1990; Maitra and Phani, 1994). In the above, E0 is the Young's modulus of the non-
porous material, p is the volume fraction of pores and m is related to the stress concentration factor
around the pores. Similar relationships have also been proposed to calculate the fracture strength of
porous materials (Danninger et al., 1993).

In this paper, we study the stress concentration around pores under dynamic loading. The pores
are idealised to have spheroidal geometries. For simplicity, the e�ect of the interaction of
neighbouring pores is ignored. Therefore, the results are valid for low volume fraction of pores.
The geometry of a single pore embedded in an in®nitely large matrix is depicted in Fig. 1a where
the z-axis is the symmetry axis, 2a and 2b being the diameters of the pore along the x- and
z-axes, respectively. The spheroidal pore is said to be prolate for b=a > 1 and oblate for b=a < 1.
The simplest form of dynamic excitation is a plane harmonic dilatational wave propagating
along this axis of symmetry. The resulting stress ®eld is axisymmetric. While the corresponding
static problem may be solved in closed form, the dynamic problem does not lend itself to a
simple solution. The di�culty is associated with the complex scattering phenomenon. The solution
of the problem will be described using both cylindrical and spherical coordinate systems shown in
Fig. 1. To solve the problem, we use a hybrid method that combines the ®nite element technique
with analytical functions. In this approach, a ®ctitious spherical boundary B enclosing the pore is
drawn. The region inside this boundary, referred to as the interior region, is modelled through an
assemblage of conventional ®nite elements. The region outside B, referred to as the exterior
region, is represented by spherical wave functions. Coupling of the interior and exterior region
solutions is achieved by imposing the continuity of displacements and tractions along the common
boundary B. This leads to a set of linear equations that enables the displacements and stresses at
any point to be determined. The concept of the hybrid method is quite general and it has been
successfully applied to solve several two- and three-dimensional elastodynamic problems (Dong,
1981; Goetschel et al., 1982; Datta and Shah, 1982; Avanessian et al., 1986, 1989; Paskaramoorthy
et al., 1988, 1989).
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2. Statement of the problem

The surface of the pore, denoted by S, may be de®ned by

x2

a2
� y2

a2
� z2

b2
� 1: �1�

The domain of the medium is denoted by D. The material is assumed to be homogeneous, linearly
elastic and isotropic. Only time-harmonic excitation is considered. Thus, all the ®eld quantities have a
time dependence eÿiot, where o is the frequency of excitation. The time dependence is suppressed in all
the subsequent representations for notational convenience.

The equation of motion of the domain D for the steady state is speci®ed by

�l� 2m�r�r �U� ÿ mr � r � U� ro2U � 0 x 2 D �2�

Fig. 1. Problem geometry with cylindrical and spherical coordinate systems.
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where U � �u, v, w� is the displacement vector, x is the position vector, r is the density, and l and m are
LameÂ constants of the medium.

The boundary condition on the surface S are of the form

sijnj � 0 x 2 S �3�
where n is the unit normal vector to the surface S and the summation convention for repeated indices is
assumed. A solution of eqn (2) satisfying eqn (3) is sought. It should be noted that the solution should
also be regular at in®nity.

3. Formulation of the problem

3.1. Interior region

This region is modelled by using ®nite elements. The motion of this region may be perceived as a
forced vibration with the incident and scattered waves providing the forcing functions at the boundary
B. The governing equations of motion can be obtained by following the conventional discretization
process of the ®nite element methodology for axisymmetric elements, and are written as

�S�fqg � fPg �4�
where

�S� � �K� ÿ o2�M� �5�
in which [K ] and [M ] are the respective sti�ness and consistent mass matrices of the interior region, {q }
is the vector of nodal displacements, and {P } is the vector of nodal loads that has non-zero components
corresponding to the interface degrees of freedom only. It should be noted that eqn (4) is formulated in
a cylindrical coordinate system as shown in Fig. 1b. Thus, the array {q } contains radial and axial
displacements at the nodes.

If the vector {q } is separated into two parts, fqBg corresponding to nodal displacement at the
boundary B, and fqIg corresponding to nodal displacements elsewhere in the interior region, eqn (4) can
be written as�

SII SIB

SBI SBB

��
qI
qB

�
�
�

0
PB

�
�6�

in which the fPBg represent the interaction forces between the interior and exterior regions.

3.2. Exterior region

The displacement vector U in this region consists of the incident and scattered ®elds which are
denoted by the superscripts i and s, respectively. A solution for Us satisfying eqn (2) and far-®eld
radiation conditions can be written in the spherical coordinate system of Fig. 1c as

Us � rf� r � r � �eRRw� �7�
where

f � Sa1nhn�aR�Pn�cos y� �8�
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w � Sa2nhn�bR�Pn�cos y�: �9�

In the above, and in the following, all the summations are over integral values of n from zero to in®nity,
eR is the unit vector along the R-direction, a1n and a2n are as yet unknown amplitude coe�cients, hn is
the spherical Hankel function of the ®rst kind, Pn is the Legendre polynomial, a and b are wave
numbers de®ned by

a2 � o2r
�l� 2m� ; b2 � o2r

m
: �10�

Substitution of eqns (8) and (9) in eqn (7) leads to

usR � S
�
a1ng

R
1n � a2ng

R
2n

�
Pn �11�

usy � S
�
a1ng

y
1n � a2ng

y
2n

�dPn

dy
�12�

where

gR1n �
n

R
hn�aR� ÿ ahn�1�aR� �13�

gR2n � n�n� 1�hn�bR�
bR

�14�

gy1n �
hn�aR�

R
�15�

gy2n � �n� 1�hn�bR�
bR

ÿ hn�1�bR�: �16�

The stress ®eld associated with the scattered waves can be derived from the displacements in eqns (11)
and (12).

ssRR � S
�
a1nf

R
1n � a2nf

R
2n

�
Pn �17�

ssRy � S
�
a1nf

y
1n � a2nf

y
2n

� dPn

dy
�18�

where

f R1n �
2m
R2

��
n2 ÿ nÿ 1

2
a2R2

�
hn�aR� � 2aRhn�1�aR�

�
�19�

f R2n �
2m
R2

n�n� 1�
b

��nÿ 1�hn�bR� ÿ bRhn�1�bR�
� �20�
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f y
1n �

2m
R2

��nÿ 1�hn�aR� ÿ aRhn�1�aR�
� �21�

f y
2n �

2m
R2

��
n2 ÿ 1ÿ 1

2
b2R2

�
hn�bR� � bRhn�1�bR�

�
: �22�

Now let p be the number of signi®cant wave functions in eqns (8), (9), (11), (12), (17) and (18).
Evaluating eqns (11) and (12) at each of the nodes lying on the boundary B, we can construct a matrix
[G ] relating the nodal displacements to the unknown coe�cients as

fqsBgsph � �G�fag �23�

where fqsBgsph is the array of displacements, in spherical coordinates, due to the scattered ®eld at the
nodes on the boundary B, {a } contains the unknown coe�cients a1n and a2n with n � 0, 1, . . . , pÿ 1. It
should be noted that the matrix [G ] is complex valued, and has dimension 2NB � 2p with NB being the
number of nodes on the boundary B.

Similarly, a relationship between the nodal forces at the boundary B, fPs
Bg, and the unknown

coe�cients {a } can be established by evaluating the stresses ssRR and ssRy at each of the nodes on B and
multiplying them by the corresponding tributary area:

fPs
Bgsph � �F�fag: �24�

We can now establish a relationship between the load vector {Ps
B} and the displacement vector {qsB} by

eliminating {a } from eqns (23) and (24). To this end, we ®rst write eqn (23) as (see Appendix)

fag � �H�fqsBgsph; �H� �
ÿ
�G ��T�G�

�ÿ1�G ��T �25�
and substitute it in eqn (24) to obtain

fPs
Bgsph � �F��H�fqsBgsph: �26�

The arrays fPs
Bg and �qsBg in the above equation are in the spherical coordinate system. When they are

transformed into cylindrical coordinates, eqn (26) takes the form�
Ps

B

	 � �Sf

��
qsB
	 �27�

where

�Sf� � �T�t�F��H��T�
in which [T ] is the transformation matrix.

3.3. Incident ®eld

The incident ®eld is speci®ed by

Ui � rfi; fi � eiaz: �28�
As indicated earlier, this is a plane P-wave, and it propagates in the direction of the positive z-axis. The
displacements and stresses induced by this wave ®eld have the following explicit forms:

uir � 0 �29�
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uiz � ia eiaz �30�

sizz � ÿmb2eiaz �31�

sirr � ÿla2eiaz �32�

sirz � 0: �33�
By evaluating these expressions at the nodes on the boundary B, the arrays fqiBg and fPi

Bg can be
formed.

3.4. Global solution

The continuity of displacements and stresses across the boundary B can be imposed by setting the
displacements and stresses from the interior region to be equal to those from the exterior region:

fqBg � fqiBg � fqsBg �34�

fPBg � fPi
Bg � fPs

Bg: �35�
In view of eqns (34), (35) and (27), eqn (6) may be written as�

SII SIB

SBI SBB ÿ Sf

��
qI
qB

�
�
�

0
Pi

B ÿ Sfq
i
B

�
: �36�

Once the above equation is solved for the nodal displacements, the unknown amplitudes of the scattered
®eld may be obtained from eqns (25).

4. Numerical results and discussion

We have used spherical functions in eqns (7)±(9) to construct a scattered-®eld solution in the exterior
region. This representation of exterior region by spherical functions is unique and complete (Morse and
Feshbach, 1953). In writing eqn (23), we have considered only a ®nite number of wave functions. This
will not introduce any signi®cant error since the contribution of the higher-order terms of the in®nite
series in eqn (23) and in other equations is small, but care should be taken to include a su�cient
number of spherical functions. The actual number of spherical functions required is determined by
conducting numerical experiments on the convergence of the solution. Also, the spherical wave functions
should be taken in sequence. That is to say, no preference be given to a higher-order spherical function
at the omission of a lower-order function. More details may be found in the excellent article by Dong
that reviews the hybrid method in its generality and addresses issues related to convergence,
completeness and uniqueness of the solution.

In this study, the dynamic excitation is provided by an incident P-wave de®ned by eqn (28). In the
absence of the pore, the stress ®eld at any point in the medium is expressed in rectangular coordinates
as

sxx � ÿla2eiazÿiot �37�
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syy � ÿla2eiazÿiot �38�

szz � ÿmb2 eiazÿiot �39�

sxy � syz � szx � 0: �40�

Since all the shear stresses are zero, all the normal stresses are principal stresses and the maximum value
is s0 � mb2.

In the presence of the pore, the stress ®eld is signi®cantly di�erent from that given by eqns (37)±(40)
due to scattering. In these problems, the primary interest is in the tangential stress stt and the hoop
stress sff where t is the tangential vector to the surface of the pore and f is the azimuthal direction in
the spherical coordinate system (Fig. 1). These stresses are expressed in dimensionless forms by
normalizing with respect to the amplitude of the incident wave, s0:

�stt � stt
s0

����
R�a

; �sff � sff
s0

����
R�a

:

Thus, the values of the �stt and �sff can be considered as dynamic stress concentration factors. These are
computed for various frequencies from the nodal displacements of eqn (36) by following standard ®nite
element procedures. The nature of the dynamic excitation is better appreciated by considering the

Fig. 2. Finite element mesh of the interior region for b=a � 0:5.
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limiting static case. When the frequency approaches zero, the applied stress ®eld at in®nity approaches

szz � ÿs0 �41�

sxx � syy � ÿ n
1ÿ n

s0 �42�

sxy � syz � szx � 0 �43�

where s0 is a constant. The stress ®eld of eqns (41)±(43) is triaxial. Thus, the results presented herein are

Fig. 3. Comparison of stresses along the circumference of a spherical pore for aa � 0:1.
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for the dynamic counterpart of this triaxial load. A typical ®nite element mesh of the interior region is
shown in Fig. 2. Re®nement of the mesh may be necessary for high frequency excitations. The results
have the general form

s � �R� iI�eÿiot

where the real part R represents the solution at t � 0 and T=2, and the imaginary part I represents the
solution at t � T=4 and 3T=4, T being the period of excitation. The absolute value �R2 � I 2�1=2 is the
maximum stress which occur at some instant depending on the phase-shift.

In order to assess the accuracy of the numerical procedure, stresses on the surface of a spherical pore

Fig. 4. Comparison of stresses along the circumference of a spherical pore for aa � 3:0.
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of radius a were computed by the present method and compared with the analytical solution. In Figs. 3
and 4, the results are presented in nondimensional form for two representative values of dimensionless
wave numbers 0.1 and 3.0. Agreement between the analytical and numerical results can be seen to be
excellent. The wavelength corresponding to the nondimensional wave number 0.1 is approximately 30
times the diameter of the pore. At this wavelength, there is little dynamic e�ects present. For the
nondimensional wave number 3.0, the wavelength is about the same as the diameter of the pore and
signi®cant dynamic interaction is expected.

We may now consider a pore having a spheroidal geometry. This problem can be solved analytically
by using spheroidal coordinates. The mathematics of this approach is, however, complex and intricate.
We have solved the problem by using the hybrid approach described earlier. Figures 5 and 6 illustrate

Fig. 5. Angular distribution of stresses on the surface of the cavity (n � 0:35, b=a � 0:2).
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the angular distribution of �stt and �sff for ®ve wave numbers aa = 0.02, 0.5, 1.0, 1.5 and 2.0. For
aa � 0:02, the frequency is very small and the wavelength is approximately 150 times the diameter of the
pore. At this wave number, hardly any dynamic e�ect is expected, and the dynamic solution can be
regarded to represent the quasi-static solution. The applied loading for this wave number is given
approximately by eqns (41)±(43), and exhibits symmetry with respect to the z � 0 plane. The resulting
stress ®eld must also be symmetric about this plane. This is evident from these Figures. At other wave
numbers, the applied stress ®elds is not symmetric since the incident wave only illuminates the bottom
half of the pore; the top half of the pore is in the shadow region. The scattering phenomenon then
dominates, considerably distorting the results from the quasi-static solution. It is apparent that the
aspect ratio and hence the geometry of the pore has a strong in¯uence on the stresses. As the aspect

Fig. 6. Angular distribution of stresses on the surface of the cavity (n � 0:35, b=a � 1:0).
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ratio increases, the maximum values of stresses decrease. The excitation frequency also seems to have a

strong in¯uence on the stresses. For aa � 0:02, maxima for both �sff and �stt occur at y � p=2. As the

frequency increases, the stresses at y � p=2 ®rst increase and then decrease. At the same time, the

stresses in the shadow region of the pore increases while the stresses in the incident side of the pore

decrease. The location of the maximum stress also shifts to the shadow side of the pore. This shift seems

to be more pronounced for �sff than for �stt. In the case of b=a � 1, for example, maximum of �sff
occurs at y � 0 for aa greater than 1.0.

In Figs. 7 and 8, �stt and �sff at y � p=2 are shown as a function of the incident wave number for ®ve

values of Poisson's ratio. A separate static analysis con®rmed that as aa approaches zero, the dynamic

stresses approach the corresponding static values. It can be seen that in the high frequency end of the

Fig. 7. E�ect of frequency on stresses at y � p=2 for b=a � 0:2.
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range considered, the dynamic stresses are lower than the static values. The dynamic stresses reach their
maxima when the wave number aa is between 0.5 and 1.0 and that the maximum dynamic stresses are
10±50% higher than the static values. In the case of b=a � 0:2 and v � 0:35, for example, maximum
value of �sff occurs at aa � 0:7 and is about 30% higher than the static values.
Figures 7 and 8 also show that Poisson's ratio of the medium in¯uences the results. It can be seen

that the maximum value of �sff increases with the increase in Poisson's ratio of the medium. Maximum
value of �stt, however, does not seem to be a�ected, except for n � 0:45.

Figure 9 presents the behavior of �sff and �stt at y � p=2 as a function of the aspect ratio b=a for
values of aa � 0:2, 0.5, 1.0, 1.5 and 2.0. It is noted that the magnitude of �stt is generally higher than the
magnitude of �sff. As the aspect ratio b=a increases, both �sff and �stt decrease. This could be attributed

Fig. 8. E�ect of frequency on stresses at y � p=2 for b=a � 1:0.
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to the surface at y � p=2 becoming increasingly planar with increasing b=a and the incident wave
impinging on this surface at near grazing angle.

Tables 1 and 2 provide the maximum values of �stt and �sff in the wave number range 0.02±3.0 for
values of b=a � 0:1, 0.2, 0.5 and 1.0. In these tables the maximum static values and their locations are
given in the third and fourth columns, respectively. The next column in the tables gives the maximum
values of the dynamic stresses. The frequency and location at which these maxima occur are given in the
sixth and seventh columns, respectively. Finally, the percentage increase of the maximum dynamic stress
concentration factor over the static value is given in the last column.

In general, the dynamic stresses are considerably higher than the static stresses. Both static and

Fig. 9. E�ect of aspect ratio b=a on the stresses at y � p=2 for n � 0:35.
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dynamic stress values are considerably large for b=a � 0:1; this is to be expected since at such low aspect
ratio, the pore is almost like a penny-shaped crack. For the tangential stress �stt maximum dynamic
stresses occur at y � p=2 in the low frequency range when aa is between 0.4 and 0.9 and are 10±60%
higher than the static values, as noted earlier. Some variations in the general trend occur for b=a � 1 in
which case the maximum dynamic stress occurs in the shadow side of the pore. The hoop stress �sff
exhibits a somewhat di�erent behaviour. In the case of b=a � 0:5 and n � 0:25, 0.30, and 0.35, for
example, maximum of �sff occur near the pole in the shadow side of the pore at the high frequency end
of the range considered. It is also noted that the absolute values of �sff are considerably lower than the
values of �stt; the percentage increase values for �sff are, however, generally higher than those for �stt.
For instance, a 107% increase can be seen for the case of b=a � 0:5 and n � 0:25.

5. Conclusions

We have studied the stresses in porous materials under a dynamic loading condition by using a hybrid
method. We have veri®ed the accuracy of the hybrid method by comparing our results with the
analytical solution for a spherical pore. For a spheroidal pore, we have illustrated that the dynamic
stress concentration factors for the tangential stress stt and hoop stress sff are signi®cantly in¯uenced

Table 1

Maximum values of �stt

Static Dynamic

b/a n �stt �max� y �stt �max� aa y Percent

increase

0.1 0.25 12.05 90 16.62 0.82 90 38

0.30 12.04 90 16.75 0.78 90 39

0.35 12.03 90 17.06 0.71 90 42

0.40 12.03 90 17.72 0.63 90 47

0.45 12.12 90 19.36 0.49 90 60

0.2 0.25 6.621 90 8.641 0.78 90 31

0.30 6.587 90 8.675 0.74 90 32

0.35 6.543 90 8.777 0.69 90 34

0.40 6.491 90 9.033 0.61 90 39

0.45 6.452 90 9.720 0.48 90 51

0.5 0.25 3.012 90 3.535 0.68 90 17

0.30 2.970 90 3.518 0.65 90 18

0.35 2.915 90 3.519 0.62 90 21

0.40 2.842 90 3.576 0.58 90 26

0.45 2.748 90 3.875 0.52 90 41

1.0 0.32 1.849 90 2.000 0.55 88 8

0.30 1.813 90 1.978 0.55 88 9

0.35 1.765 90 1.974 0.60 86 12

0.40 1.702 90 2.084 0.65 82 22

0.45 1.618 90 2.616 0.56 66 62
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by the frequency of excitation (or wave number), geometry of the pore and Poisson's ratio of the
medium. In general, the dynamic stress concentration factors are considerably higher than the quasi-
static values, and in certain cases the percentage increase may reach as high as 10% over the quasi-static
value.

Appendix

Assuming fqsBgsph is known, eqn (14) may be solved for fag by minimizing the least square error of the
error function feg de®ned by

feg � �G�fag ÿ fqsBgsph: �A1�

The square of the error e2, which is a scalar, is given by

e2 � fe�gTfeg: �A2�
Substitution of eqn (A1) into eqn (A2) leads to

e2 � fa�gT�G ��T�G�fag ÿ fqs�B gTsph�G�fag ÿ fa�gT�G ��TfqsBgsph � fqs
�
B gTsphfqsBgsph: �A3�

Minimizing the square of the error with respect to {a } yields

Table 2

Maximum values of �sff

Static Dynamic

b/a n �sff �max� y �sff �max� aa y Percent

increase

0.1 0.25 2.925 90 3.915 0.82 90 34

0.30 3.625 90 4.933 0.77 90 34

0.35 4.341 90 6.048 0.71 90 39

0.40 5.092 90 7.386 0.63 90 45

0.45 5.968 90 9.398 0.49 90 57

0.2 0.25 1.492 90 1.848 0.78 90 24

0.30 1.886 90 2.390 0.75 90 27

0.35 2.285 90 2.976 0.70 90 30

0.40 2.693 90 3.659 0.62 90 36

0.45 3.144 90 4.639 0.49 90 48

0.5 0.25 0.689 90 1.428 3.00 2 107

0.30 0.904 90 1.549 3.00 2 71

0.35 1.122 90 1.651 2.92 2 47

0.40 1.315 90 1.736 0.71 90 29

0.45 1.557 90 2.360 0.59 90 52

1.0 0.25 0.544 90 0.997 2.75 0 83

0.30 0.721 90 1.113 2.55 0 54

0.35 0.907 90 1.281 2.27 0 41

0.40 1.100 90 1.586 0.74 66 44

0.45 1.300 90 2.457 0.60 24 89
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�G ��T�G�fag � �G ��TfqsBgsph: �A4�

Since �G ��T�G � is a square matrix, eqn (A4) can be solved for {a } as

fag � �H�fqsBgsph �A5�

where

�H� �
ÿ
�G ��T�G�

�ÿ1�G ��T: �A6�
For pRNB, [H ] is the generalized inverse of [G ] and the uniqueness of the operation is assured
(Lancaster, 1969).
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